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Summary: A 15-deoxybruceolide derivative (3) whose total synthesis had 
been achieved previously was converted into bruceantin (1). 

Bruceantin (l)l) and its related quassinoids 2) have attracted much atten- 

tion as synthetic targets 3) because of their significant in vivo activity 

against P388 leukemia*) and highly oxygenated complex carbon frameworks. How- 

ever none of them has been synthesized. In this paper, we would like to re- 

port the conversion of 15-deoxybruceolide derivative 3 derived from naturally 

occurring brusatol (2) into bruceantin (1). The compound 3 has been synthe- 

sized in racemic form by the authors, 5) therefore, the first total synthesis 

of bruceantin (1) has now been formally achieved. 

Conversion of 3 into 1 requires (i) oxygenation at C-15 6) and (ii) selec- 

tive esterification of the resulting alcohol. Direct oxygenation at C-15 by 

enolate oxidation methods, which were successfully applied for similar com- 

pounds in the literatures, 6) gave no product or a complex mixture. Therefore, 

we examined indirect multistep methods similar to those which were developed 

by us for preparation of 15-hydroxyquassin from quassin. 7) 

Reduction of the lactone 3 with 1 equiv of NaBH4 in EtOH-CH2C12 (2:l) at 

0 OC for 5 h gave hemiacetal (4)8) as a mixture of diastereomers at C-16 (ca. 

2:3 by 
1 
H-NMR) in 87% yield, which were treated with POC13 in pyridine at 100 

OC for 4 h to give vinyl ether (5) in 67% yield. Although in the case of an- 

hydroneoquassin osmium tetraoxide oxidized the double bond of the ring D with 

high selectivity, 7) in the case of 5 the reagent reacted with the double bond 

of the ring A primarily and the desired 15-hydroxyhemiacetal (6) was not ob- 

tained. Therefore, introduction of an oxygen function into C-15 via 15,16- 

epoxide was investigated as an alternative method. Treatment of 5 with MCPBA 

in CH2C12 at room temperature afforded unexpected m-chlorobenzoylated hemi- 

acetal (7) in 85% yield. This result suggested the corresponding epoxide was 

extremely unstable and reactive toward nucleophile. On epoxidation with MCPBA 

in two-phase system (1:l CH2C12-aq.NaHC03), !j yielded 6') in 61% yield along 

with a small amount of 7. The hemiacetal 6 was oxidized with excess silver(I) 

oxide in refluxing acetonitrile to give a bruceolide derivative (8) in 65% 

yield. The configuration of the hydroxyl group at C-15 of 8 was shown to be 8 

by the coupling constant (12.5 Hz) between C-14 and C-15 protons. 

On alkaline hydrolysis 8 afforded monoacetate (9) under mild reaction 
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conditions and was decomposed under forcing conditions. As hydrolysis of the 

acetyl group at C-11 was found to be possible under acidic conditions, 8 was 

esterified with (E)-3,4-dimethyl-2-pentenoic acid 7) (1.5 equiv of acid, 1.5 

equiv of DCC, 2 equiv of DMAP in CH2C12 at room temperature, ca. 72% yield) to 

yield 10, which was subsequently hydrolyzed with 3N H2S04-MeOH (l:l, reflux, 

29 h) to give rise to bruceantin (1) (15%) along with 11-0-acetylbruceantin 

(11) (47%). The synthetic bruceantin (1) was identified with an authentic 

sample chromatographically and spectroscopically. 
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